法拉利haobcAI作为一个新技术被世人知晓,可能是源于两年前。彼时,谷歌的人工智能棋手“Alpha Go”战胜围棋世界冠军李世石而一战成名,人们开始了解到AI并寄予这项技术更多的遐想:AI是否是生产力革命的下一个“风口”?而在科技行业中,嗅觉灵敏的手机行业当然希望牢牢抓住AI这一风口,将这一技术由前端科研下放到消费电子领域,应用到智能手机终端。AI终究更快地走入了人们的生活。
自2017年9月2日首款AI手机芯片麒麟970芯片正式发布,支持到硬件级的AI能力进入到手机行业,正式开启智能手机AI化的上半场。在这个时间区间内,手机的应用主要是各个手机厂家在推动,零散,分裂,水平参差不齐。由于手机厂商的研发投入与技术底蕴各不相同,自然对AI的真实性与可用性也不一而足。
时至今日,AI技术已经从理论开始产品化实践,进而向消费电子领域全面普及。在手机行业中,上至旗舰,下到千元机,无论是拍照还是玩游戏,整个行业渴望抢食AI红利,乃至AI手机从拥有技术底蕴的公司辛勤研发的“风口”变成哪怕不具备能力的厂家希望能靠营销上位的“风噪”。
首先是华为、苹果等厂商,凭借专门的AI硬件与软件的配合实现了完成度较高的AI功能,促进了行业的发展和进步。例如华为在硬件上采用麒麟970/980等具有独立NPU的AI芯片,软件上通过集成了AI识别场景、AI翻译等功能的EUMI系统来实现AI功能,方便了用户的使用。在过去的一段时间里,似乎安卓阵营只有华为和荣耀有底气讲自己的产品是名副其实的AI手机。
另一方面,有一些厂家,则单单凭借一些软件算法,就称自己的手机为“AI手机”,甚至一些千元机,也是张口闭口“AI拍照”“AI游戏”。但归根结底,他们鲜有技术积累,遑论实现真正的AI功能,自然无法让用户感觉到手机变得更加智能;甚至在一定程度上加大了手机行业营销过度的“风噪”声量。
简单来说,手机AI就是用专门的AI芯片识别特定场景并针对性地完成任务。具体的实现原理则是以AI芯片对神经网络模型进行深度学习,进而在自然语义理解,图像识别等场景下工作。
可以理解为,AI的本质是运算,当前手机芯片AI运算解决方案主要以独立处理单元体现。其中独立处理单元则是在手机处理器中加入深度学习专用处理器IP。我们熟知的传统处理器和图形处理器一般是面向特定部分的应用,不具有向深度学习方面的优化计算能力。而专门进行AI计算的专用处理器则能够显著提升深度学习的处理速度和能效,提升能效比。
目前在端侧,手机AI最常解决的场景在人脸识别、物体识别、图像分割、智能翻译等场景。举个例子,你在使用手机拍照时,手机能自动识别蓝天、人像、动物这些具体场景,从而针对不同场景进行不同优化,都是图像识别、图像分割这些看似“高端”的技术的落地。而对于AI,其性能也并非“看不见摸不着”。而在苏黎世联邦理工学院的AI Benchmark测试中,麒麟980获得了目前安卓手机中的No:1。而在比较经典的AI测试场景中,苹果A12 Bionic每秒能识别6000张照片。
因此,在近半年发布的A12 Bionic、麒麟980,以及三星Exynos9820中都加入了独立的神经网络处理单元,主流移动芯片厂商对于自家的旗舰终端芯片,标志着上游供应链已经完成了硬件上对AI的支持。(在下个月高通发布的8150中,据说也会搭载独立NPU)
从华为开创移动端人工智能芯片的先河,到如今几乎所有的主流旗舰级芯片都加入硬件级AI的支持。如果说单个手机厂家自己做AI只是自发的行为,以致于各家所能实现的AI水平参差不齐;那么全体芯片厂商从上游的芯片供应来推动手机AI的发展,就使得硬件级AI将覆盖未来几乎所有的高端旗舰智能手机。至此,智能手机AI的上半场告一段落。
|