|
|
商业智能的发展及核心支撑技术 |
|
作者:佚名 文章来源:本站原创 点击数: 更新时间:2024/1/7 3:17:03 | 【字体:小 大】 |
兰的秘密基地4月企业资源规划(ERP) 、销售终端(POS) 、市场调查、供应商、客户、网络、政府部门等都在不断地往我们的桌面上添加信息,实际上平均每18个月信息量就翻一番,但是能分析的数据究竟有多少呢? 有些项目专家估计目前被利用的数据只有5 %~10 %,并且我们能分析的数据仅限于数据库中的数据。那么怎样才能把大量的数据转换成可靠的、商用的信息以增加利润和市场份额,这已成为商业IT界关注的问题。由此,商业智能技术应运而生。
BI(Business Intelligence, 商业智能) 是随着Internet 的高速发展和企业信息化的不断深入而产生的。BI使得企业的决策者能够对企业信息进行有效、合理地分析和处理, 为生产决策提供可靠的依据。学术界对BI有不同的定义: DataW arehouse Institute 组织认为“BI是将数据转换成知识并将知识应用到商业行为上的一个过程”; Gartner Group 则认为“BI是将数据转换成信息的过程, 然后通过发现将信息转化为知识”。确切地讲, BI并不是一项新技术, 它将数据仓库(DW )、联机分析处理(OLA P)、数据挖掘(DM ) 等技术与客户关系管理(CRM ) 结合起来应用于商业活动实际过程当中, 实现了技术服务于决策的目的。
现在BI技术应用得非常广泛,涵盖电信、保险、银行、医疗、交通、粮食等行业,为企业提供决策用的重要数据,帮助企业制定有效而完善的运营计划。例如在粮食行业,运用BI技术能有效地制订粮食调运计划、分析资金分配情况、制定收购计划等。
商务活动从办公自动化出现的早期开始就在其运作过程中收集大量的数据,包括销售、成本、质量控制、库存、客户服务等各方面息息相关的企业数据,分别存储于数据库、数据集市、数据仓库、多维数据库、第三方的应用或其它文件中。因此对大部分企业来说数据处理的问题不是数据缺乏,而是大量的数据冗余和数据不一致。庞大的数据乏,而是大量的数据冗余和数据不一致。庞大的数据量和传统数据管理方法的缺陷,使大部分企业出现了“数据拥挤”(数据监狱) 现象,既不利于企业的管理也不利于信息的有效利用。因此,如何解决数据拥挤,同时又能使这些数据充分地发挥作用这已成为企业商务发展的一个热点问题。
在企业界,数据资产的观念正在进入企业的资源规划( ERP) 系统中,而把数据转换为资产的方法和技术也正在成为企业投资IT 的热点。因为目前大部分大中规模的企业都是信息丰富的组织,而一个信息丰富的组织的绩效不仅仅依赖于产品、服务或地点等因素,而更重要的是依赖知识。而从数据—信息—知识是一个并不简单的过程。商业智能的本质正是把数据转化为知识,致力于知识发现和挖掘,使企业的数据资产能带来明显的经济效益,减少不确定性因素的影响,使企业取得新的竞争优势。
电子商务正在改变着全球商务活动的方式,信息在经济活动中越来越占据着重要的地位。对企业来说信息包括生产、销售、市场、顾客和竞争对手的信息,信息是企业竞争的战略性资源。建立在Internet 之上的企业经营模式电子商务:电子邮件、电子数据交换、电子支付系统、电子营销等技术的发展和应用为商业智能系统提供了市场和生存环境。
商业智能的发展也得益于相关技术的发展,并行处理系统、廉价数据存储、新数据挖掘算法、神经网络技术、人工智能技术、决策支持技术、从大量数据中发现其后潜藏的商业机会等等技术的发展,使企业能以更低的成本投资商业智能,并取得更高的IT 投资回报率。
|
|
 栏目文章
|
|
|